
Mock Exam Backend 2024

1 / 10

Programming Exam - Medical Appointments

This mock exam is set to 4 hours

Exam guidelines

All written materials, PCs, laptops and internet resources are permitted during the examination.

We expect you to use code from your previous assignments and projects, otherwise you will not have time

to complete the exam.

Mobile phones and communication with anyone other than the examiner, censor and proctor are prohibited.

You are not allowed to store your solutions on external networks, drives/hosts such as GitHub, Facebook,

Google Drive, DropBox, OneDrive or similar. Breach of this rule will result in disqualification from the

examination and appropriate sanctions will be imposed on both the sender/uploader and the recipient.

At the end of the exam, you must upload your entire project to Wiseflow. Your upload should be in the form

of a zip file containing all your solutions and the document with your answers to the theoretical questions (a

README.md file).

The exam duration is 4 hours. You may only leave the exam room for restroom breaks. Smoking is not

allowed.

Later in the week, an individual assesment round will take place. This will take 30 minutes per student.

OBS! Since this is a Mock-exam - the real exam will be different, but in the naborhood of this mock-exam.

Mock Exam Backend 2024

2 / 10

Introduction

You are required to program parts of a backend for a medical clinic, that has doctors and appointments.

In addition to programming this system, there will be theoretical questions along the way where you will be

asked to explain considerations and provide explanations. These should be written in a document (a

README.md file), which should be uploaded to Wiseflow along with your code.

Domain Description

"Medical Appointments", is a platform that keep track of medical doctors and their appointments.

More specifically, you need to program an API that can handle the following properties for a doctor:

id, a unique identifier

name

date of birth

year of graduation from medical school

name of clinic

speciality. Can be surgery, family medicin, psychiatry, pediatrics or geriatrics.

Mock Exam Backend 2024

3 / 10

Doctors properties/data can be displayed as in the table below:

ID Name
Date of

Birth

Year of

Graduation
Name of Clinic Speciality

1 Dr. Alice Smith
1975-04-

12
2000 City Health Clinic FAMILY_MEDICINE

2
Dr. Bob

Johnson

1980-08-

05
2005

Downtown Medical

Center
SURGERY

3 Dr. Clara Lee
1983-07-

22
2008 Green Valley Hospital PEDIATRICS

4 Dr. David Park 1978-11-15 2003
Hillside Medical

Practice
PSYCHIATRY

5 Dr. Emily White
1982-09-

30
2007 Metro Health Center GERIATRICS

6
Dr. Fiona

Martinez

1985-02-

17
2010

Riverside Wellness

Clinic
SURGERY

7 Dr. George Kim
1979-05-

29
2004

Summit Health

Institute
FAMILY_MEDICINE

These rows include fictitious names, dates of birth, graduation years, clinic names, and specialties.

The data type for the Date of birth is LocalDate.
The data type for the speciality should be an enum.

Task 1: Build a REST Service Provider with Javalin

1.1 Create a Java project using the Javalin framework.

1.2 Create a README.md file in your project. This file should contain your answers to the questions that need

a written answer. We have marked those questions with a README.md tag. Please add task numbers for

each answer.

1.3 Create an enum called Speciality with the following types: SURGERY, FAMILY_MEDICINE,

PSYCHIATRY, PEDIATRICS or GERIATRICS

1.4 Implement a DoctorDTO class with attributes: id, name, dateOfBirth, yearOfGraduation,
nameOfClinic, and speciality (enum).

Mock Exam Backend 2024

4 / 10

1.5 Develop an API in Javalin with the following endpoints:

HTTP

method
REST Resource

Status

(ok)
Not okay

1. GET /api/doctors 200 500

2. GET /api/doctors/{id} 200
404 Not found /

500

3. GET /api/doctor/speciality/{speciality} 200
404 Not found /

500

4. GET /api/doctor/birthdate/range 200 400 / 404 / 500

5. POST /api/doctors 201 400 / 500

6. PUT /api/doctors/{id} 200 400 / 404 / 500

The details for each endpoint can be found in Appendix A.

The solution should include:

1.5.1 Routing

1.5.2 Create a controller called DoctorMockController. The controller methods should each generate a

JSON response.

1.5.3 To begin with, the data should be held in an in-memory Java data structure, which means that we

"mock" the database. For this, create a DAO class, DoctorMockDAO (or use your own naming). Manage the

list of doctors in the DoctorMockDAO as a static ArrayList. Populate the array with the fake data in the table

above.

The DoctorDAOMock should have these methods:

List<DoctorDTO> readAll();
DoctorDTO read(int id); // *) use streams
List<DoctorDTO> doctorBySpeciality(Speciality speciality); // *) use
streams
List<DoctorDTO> doctorByBirthdateRange(LocalDate from, LocalDate to); //
*) use streams
DoctorDTO create(DoctorDTO doctor);
DoctorDTO update(int id, DoctorDTO doctor);
// *) use streams to implement these methods

Use java streams where indicated to build the reponse.

The doctorBySpeciality method should return a list of doctors with a specific speciality.

The doctorByBirthdateRange method should return a list of doctors that is born within a

specified date range. For example between 2004 and 2009, both dates inclusive.

Mock Exam Backend 2024

5 / 10

1.5.4 Create a doctor.http file and test the endpoints. Copy the output to your README.md file to

document that the endpoints are working as expected.

Task 2: REST Error Handling

2.1 In your implementation various exceptions may occur. Each endpoint will also need to return a HTTP

Statuscode. Please make sure that your endpoints will live up to these requirements:

HTTP

method
REST Resource

Status

(ok)
Not okay

1. GET /api/doctors 200 500

2. GET /api/doctors/{id} 200
404 Not found /

500

3. GET /api/doctor/speciality/{speciality} 200
404 Not found /

500

4. GET /api/doctor/birthdate/range 200 400 / 404 / 500

5. POST /api/doctors 201 400 / 500

6. PUT /api/doctors/{id} 200 400 / 404 / 500

Prioritize to implement exception handling for endpoint number 2, 3, 4, and 5.

2.2 An exception should be returned from an endpoint request as JSON with these properties:

status: The HTTP status code

message: A message describing the error

timestamp: The time of the error

Example:

{
 "status": 404,
 "message": "Doctor not found - /api/doctor/34",
 "timestamp": "2023-11-24 10:57:19.373"
}

Use your doctor.http file to provoke these errors to occur.

Task 3: Generics

3.1 Create a generic interface named iDAO that works with both DoctorDAOMock and other DTOs. You

should refactor DoctorDAOMock to work with this generic interface.

3.2 Explain in the README.md file the purpose of generics in this exercise. Why can it be helpful?

Mock Exam Backend 2024

6 / 10

Task 4: JPA and Persistence

4.1 Set up a HibernateConfig class with a method that returns an EntityManagerFactory for

managing doctor-related entities in your project.

4.2 Create a new jpa entity class called Doctor with these attributes: id, name, dateOfBirth,
yearOfGraduation, nameOfClinic, speciality (enum), createdAt, and updatedAt. The
createdAt and updatedAt attributes should be of type LocalDateTime - and should not be included in

the constructor.

4.3 Use the @PrePersist and @PreUpdate annotations to set the createdAt and updatedAt
properties when a new doctor is created or updated.

4.4 Create a new jpa entity class called Appointment with the following properties: id,
clientName, date, time, comment. Here are some examples for appointments:

ID ClientName Date Time Comment

1 John Smith 2023-11-24 09�45 First visit

2 Alice Johnson 2023-11-27 10�30 Follow up

3 Bob Anderson 2023-12-12 14�00 General check

4 Emily White 2023-12-15 11�00 Consultation

5 David Martinez 2023-12-18 15�30 Routine checkup

6 Clara Lee 2023-12-20 08�45 Vaccine shot

These rows include fictitious names, dates, times, and comments for appointments.

4.5 Create an AppointmentDTO class with the following properties: id, clientName, date, time,
comment.

4.6 The relation between Doctor and Appointment should be a OneToMany relationship. This means that

a doctor can have many appointments, but an appointment can only be assigned to one doctor.

4.7 The only Doctor attributes that are required for update operations are dateOfBirth,
yearOfGraduation, nameOfClinic, and speciality.

Mock Exam Backend 2024

7 / 10

4.8 Create a DAO class called DoctorDAO, using JPA and Hibernate. The new DAO should implement the

iDAO interface and have these methods:

 List<Doctor> readAll()
 Doctor read(int id)
 List<Doctor> doctorBySpeciality(Speciality speciality);
 List<Doctor> doctorByBirthdateRange(LocalDate from, LocalDate to);
 Doctor create(DoctorDTO route)
 Doctor update(int id, DoctorDTO doctor)

You have the option to follow a Test-Driven Development (TDD) approach for tasks 4 and 5 together or

manually test the DAO class in a static method.

4.9 Create a Populator class and populate the database with at least to doctors with 2 appointments each.

4.10 In the final step, replace the existing endpoints to persist data in the database instead of the mock

version used earlier. Create a new controller named DoctorControllerDB to replace

DoctorMockController and connect the handlers to your DoctorDAO.

4.11 Run the train.http file and test the endpoints to ensure they work as expected. Copy the output to

your README.md file to document the results.

Task 5: Automated Tests for DoctorDAO

6.1 Set up the @BeforeAll method to create the EntityManagerFactory for managing doctor-related

entities.

6.2 Configure the @BeforeEach and @AfterEach methods to create and clean up the test objects,

including doctors, appointments, or any other relevant entities.

6.3 Create a test method for each of the methods in the DoctorDAO class.

6.4 In your README.md file, please describe the main differences between regular unit tests and tests

performed in this task.

Task 6: Testing the Doctor API with REST Assured

This task is a theoretical one. Please type brief answers in the README.md file.

7.1 Describe the purpose of Rest Assured and why we want to test the endpoints in this way.

7.2 Describe in words how we set up our database for tests.

7.3 Please describe why testing REST endpoints is different from the tests you performed in Task 5.

END OF TASKS

Mock Exam Backend 2024

8 / 10

Appendix A: Endpoints for doctor API

�. List All Doctors

Endpoint: /api/doctor/

Method: GET

Description: Retrieves a list of all doctors.

json response example:

[
 {
 "id": 1,
 "name": "Dr. Alice Smith",
 "dateOfBirth": "1975-04-12",
 "yearOfGraduation": 2000,
 "nameOfClinic": "City Health Clinic",
 "speciality": "FAMILY_MEDICINE"
 }
 // More doctors...
]

�. Get Doctor by ID

Endpoint: /api/doctor/{id}

Method: GET

Description: Retrieves details of a specific doctor based on their ID.

json response example:

{
 "id": 1,
 "name": "Dr. Alice Smith",
 "dateOfBirth": "1975-04-12",
 "yearOfGraduation": 2000,
 "nameOfClinic": "City Health Clinic",
 "speciality": "FAMILY_MEDICINE"
}

Mock Exam Backend 2024

9 / 10

�. Search Doctors by Speciality

Endpoint: /api/doctor/speciality/{speciality}
Method: GET
Description: Retrieves a list of doctors who specialize in a specific area (e.g., surgery,

psychiatry).

The json response is similar to List All Doctors.

�. Get Doctors by Date of Birth Range

Endpoint: /api/doctor/birthdate/range
Method: GET

Description: Retrieves doctors born within a specified date range. The range is provided as

query parameters. Like this: /api/doctors/birthdate/range?from=1975-01-
01&to=1979-01-01
The json response is similar to List All Doctors.

�. Create New Doctor

Endpoint: /api/doctor/

Method: POST

Description: Adds a new doctor. The doctor's details are sent in the request body.

json request body example:

{
 "name": "Dr. Sophus Olsson",
 "dateOfBirth": "1980-05-21",
 "yearOfGraduation": 2008,
 "nameOfClinic": "Green Valley Hospital",
 "speciality": "PEDIATRICS"
}

json response example:

{
 "id": 6, // newly created id from database
 "name": "Dr. Sophus Olsson",
 "dateOfBirth": "1980-05-21",
 "yearOfGraduation": 2008,
 "nameOfClinic": "Green Valley Hospital",
 "speciality": "PEDIATRICS"
}

Mock Exam Backend 2024

10 / 10

�. Update Doctor Information

Endpoint: /api/doctor/{id}

Method: PUT

Description: Updates the information of an existing doctor. The updated details are sent in the

request body.

json request body example:

{
 "name": "Dr. Alice Smith",
 "dateOfBirth": "1975-04-12",
 "yearOfGraduation": 2001, // new graduation year
 "nameOfClinic": "City Health Clinic",
 "speciality": "FAMILY_MEDICINE"
}

json response example (the updated entity):

{
 "id": 1,
 "name": "Dr. Alice Smith",
 "dateOfBirth": "1975-04-12",
 "yearOfGraduation": 2001,
 "nameOfClinic": "City Health Clinic",
 "speciality": "FAMILY_MEDICINE"
}

