
Mock Exam Backend 2024

1 / 6

Mock Exam: Programming and Technology

November 2024, the exam duration is set to 4 hours

Exam guidelines

All written materials, PCs, laptops and internet resources are permitted during the examination.

We expect you to use code from your previous assignments and projects, otherwise you will not have time

to complete the exam.

Mobile phones and communication with anyone other than the examiner, censor and proctor are prohibited.

You are not allowed to store your solutions on external networks, drives/hosts such as GitHub, Facebook,

Google Drive, DropBox, OneDrive or similar. Breach of this rule will result in disqualification from the

examination and appropriate sanctions will be imposed on both the sender/uploader and the recipient.

At the end of the exam, you must upload your entire project to Wiseflow. Your upload should be in the form

of a zip file containing all your solutions and the document with your answers to the theoretical questions (a

README.md file).

The exam duration is 4 hours. You may only leave the exam room for restroom breaks. Smoking is not

allowed.

Later in the week, an individual assesment round will take place. This will take 30 minutes per student.

OBS! Since this is a Mock-exam - the real exam will be different, but in the naborhood of this mock-exam.

Introduction

You are required to program parts of a backend for an online web shop, including adding new items to the

web shop and more.

In addition to programming this system, there will be theoretical questions along the way where you will be

asked to explain considerations and provide explanations. These should be written in a document (a

README.md file), which should be uploaded to Wiseflow along with your code.

Domain Description

Lyngby Garden Center and other Plant Resellers want to sell garden plants online. Garden plants are

displayed with information such as plant type (Roses, Rhododendrons, shrubs, ...), name, size, and price.

Mock Exam Backend 2024

2 / 6

More specifically, you need to program a system that can handle the following properties for plants:

id, a unique identifier

planttype

name

price

maxheight

Plant properties/data can be displayed as in the table below:

id planttype name maxheight price

1 Rose Albertine 400 199.50

2 Bush Aronia 200 169.50

3 FruitAndBerries AromaApple 350 399.50

4 Rhododendron Astrid 40 269.50

5 Rose The DarkLady 100 199.50

There are, of course, many more plants, but they are not shown here.

Task 1: Build a REST Service Provider with Javalin

1.1 Create a Java project using the javalin framework

1.2 Create a README.md file in your project. This file should contain your answers to the questions, that

need a written answer. We have marked those questions with a README.md tag. Please add task numbers

for each answer.

1.3 Implement a PlantDTO class with properties: id, planttype, name, maxheight, and price.

Mock Exam Backend 2024

3 / 6

1.4 Develop an API in Javalin with the following endpoints:

HTTP

method
REST Ressource json Comment

GET /api/plants

response: [{"id": 1,

"planttype": "Rose", "name":

"Albertine", "maxheight": 400,

"price": 199.50}, ...]

Retrieve all plants

GET /api/plants/{id}

response: {"id": 1,

"planttype": "Rose", "name":

"Albertine", "maxheight": 400,

"price": 199.50}

Retrieve a plant by its ID

GET /api/plants/type/{type}

response: [{"id": 1,

"planttype": "Rose", "name":

"Albertine", "maxheight": 400,

"price": 199.50}, ...]

Retrieve plants by type

POST /api/plants

request payload:
{"planttype": "Rose", "name":

"Gallicanae", "maxheight":

350, "price": 299.0}

response: {"id": 6,

"planttype": "Rose", "name":

"Gallicanae", "maxheight":

350, "price": 299.0}

Add a new plant. The

created plant object

should be returned with

the assigned id

The solution should include:

1.4.1 Routing as shown above in section 1.4.

1.4.2 A controller, PlantController, based on an interface IPlantController. The controller methods

should each generate a json response.

1.4.3 To begin with, the data should be held in an in-memory Java datastructure, which means that we

"mock" the database. For this, create a DAO class, PlantDAOMock (or use your own naming). Manage the

list of plants in the PlantDAOMock as a static arraylist or a hashmap. The PlantDAOMock should have

these methods:

List<PlantDTO> getAll()
PlantDTO getById(int id)
List<PlantDTO> getByType(String type)
PlantDTO add(PlantDTO plant)

1.5 Create a dev.http file and test the endpoints. Copy the output to your README.md file to document

that the endpoints are working as expected.

Mock Exam Backend 2024

4 / 6

Task 2: REST Errorhandling

2.1 In your implementation various exceptions may occur. Think about where these exceptions can happen,

and how to handle them. Note in your REAMDME.md file for each endpoint which errors you handle, and

which HTTP status codes you wish to return. Also when everything goes well. Like this:

HTTP method REST Ressource Exceptions and status(es)

GET /api/plants

GET /api/plants/{id}

GET /api/plants/type/{type}

POST /api/plants

(feel free to cut'n paste this markdown and fill out):

HTTP method	REST Ressource	Exceptions and status(es)
GET	`/api/plants`	
GET	`/api/plants/{id}`	
GET	`/api/plants/type/{type}`	
POST	`/api/plants`	

2.2 Demonstrate how to handle some of the exceptions documented above. An exception should be

returned from an endpoint request as json with these properties:

status: The HTTP status code

message: A message describing the error

timestamp: The time of the error

Example:

{
status: 404,
message: "Not found - /api/v1/plants/34",
timestamp: "2023-11-02 08:57:19.373"
}

Task 3: Streams and Generics

Now add methods in the PlantDAOMock class that:

3.1 returns a list of plants with a maximum height of 100 cm using the stream API, filter() and a

predicate function.

3.2 maps / converts a list of PlantDTOs to a list of Strings containing the plant names. Again use the stream
API and the map function.

Mock Exam Backend 2024

5 / 6

3.3 sorts a list of PlantDTOs by name using streams, sorted(), and a Comparator.

3.4 Please note in your README.md file which programming paradigm the stream API is inspired by.

The next step is introducing generics

3.5. Create an interface named iDAO by using generics, so it works with PlantDAOMock. We will need the

generic version later in Task 4 when we start working with entities. But for now, the interface iDAO is only

applied on PlantDAOMock. You will have to refactor PlantDAOMock to work with iDAO

3.6. Create a new DTO class: ResellerDTO with the following properties: id, name, address, phone. This is

a suggestion for reseller data:

id name address phone

1 Lyngby Plantecenter Firskovvej 18 33212334

2 Glostrup Planter Tværvej 35 32233232

3 Holbæk Planteskole Stenhusvej 49 59430945

The ResellerDTO will be used in the next Task 4.

Task 4: JPA

4.1 Setup a HibernateConfig class with a method that returns a EntityManagerFactory.

4.2 Implement a Plant entity class with the following properties: id, type, name, maxheight, price.

4.3 Implement a Reseller entity class with the following properties: id, name, address, phone, and a

ManyToMany relationship to Plant. This means that a reseller (Plant Shop) can have many plants in stock,

and each plant can be sold by many resellers.

4.4 Create a DAO class PlantDAO using JPA and Hibernate. The new DAO should implement iDAO and add

3 extra methods:

List<Plant> getAll()
Plant getById(int id)
List<Plant> getByType(String type)
Plant add(PlantDTO plant)
// Extra methods that are not in iDAO:
Plant deletePlant(int id)
Reseller addPlantToReseller(int resellerId, int plantId)
List<Plant> getPlantsByReseller(int resellerId)

NOTE: You have the option to do task 4 and 5 together as TDD. Otherwise, test the DAO class manually in a

static method.

4.5 The last step is to change the endpoints to persist data in the database instead of the mock-version we

used earlier. Create a new controller called PlantControllerDB to replace PlantController - and

hook up the handlers to your PlantCenterDAO.

Mock Exam Backend 2024

6 / 6

4.7 Run the dev.http file and test the endpoints again. They should still work. Copy the output to your

README.md file to document the output.

Task 5: Create automated tests for the PlantCenterDAO class

5.1 Setup @BeforeAll to create the EntityManagerFactory.

5.2 Setup the @BeforeEach and @AfterEach methods to create the test objects (Plants and Resellers).

5.3 Create a test method for each of the methods in the PlantDAO class.

5.4 Please describe in you own words the main differences between regular unit-tests and tests done in this

task in your README.md file.

Task 6: Create a Test to test the REST endpoints

6.1 Create a test class for the REST endpoints.

6.2 Setup @BeforeAll to create the Javalin server, the PlantControllerDB and the

EntityManagerFactory for test.

6.3 Setup the @BeforeEach and @AfterEach methods to create the test objects (Plants and Resellers).

6.4 Create a test method for each of the endpoints in the PlantControllerDB class.

6.5 Please describe in your own words why testing REST endpoints is different from the tests you did in

Task 5. Write you answer in your README.md file.

