
Literature:

Remember Turn on Default Principal To Role Mapping in order to avoid mappings

Threads
Runnable
Executors
Futures and Callables

(Making remote HTTP-requests)

Remember Turn on Default Principal To Role Mapping in order to avoid mappings

WHY Todays Topic's

WHY

The Goal: our own broker api

Short recap on threads

Super Simplified Diagram of a
Threads Life Cycle

Link

http://www.btechsmartclass.com/java/java-thread-model.html

Immutability

Immutable = cannot be mutated
Same as final keyword in Java

Shared memory leads to race-conditions and starvation.
And Possibly deadlocking

Solution: Don’t change values!

New problem: How do get data back from threads?

Proces 1 Proces 2

(Shared) Memory

?

Runnable interface

Runnable interface to normal Threads as well as executors

Has one abstract method run() that takes no arguments and returns void:

public class MyTask implements Runnable{

@Override

public void run() {

// Your method here

}

}

Thread t = new Thread(new MyTask());

t.run();

t.start();

"Never" create your threads like this. Use

one of the thread-pools supplied by the
Executors class

ExecutorService's

● Threads have overhead (time and memory)

● Better to divide your work into tasks, and let reusable threads run them.

● "Tasks" is what we call Runnables (and Callables) in Java, when we call them through executors

ExecutorService

ExecutorService es = Executors.newXXXThreadPool();
es.execute(task1); //task1 must be a Runnable-instance
es.execute(task2);

…

es.shutdown();

es.awaitTermination();

ExecutorService’s are usually created via one of the factory
methods in the Executors class as outlined below:

Executors with Runnables

ExecutorService: Pool types

NewCachedThreadPool()
Creates a thread pool that creates new threads

as needed, but will reuse previously constructed
threads when they are available. If threads are

idle for 60 seconds, they are terminated. Suitable for

many short-lived tasks.

newFixedThreadPool(int nThreads)
Creates a thread pool that reuses a fixed
number of threads operating off a shared

unbounded queue.

NewSingleThreadExecutor()
Creates an Executor that uses a single worker
thread operating off an unbounded queue. Ideal

for scenarios where only one task should run at a time.

newScheduledThreadPool()
Executes periodically (eg. For database clean
up) Useful for tasks that need to be executed on a

timed schedule.

WorkStealingPool() From Java8
Creates a thread pool that maintains enough
threads to support the given parallelism level,
and may use multiple queues to reduce
contention.

A Producer/Consumer Solution

En “task” køres via run() metoden i
en Runnable

Getting results back from Threads

Shared memory leads to race-conditions and starvation. And Possibly deadlocking

Solution: Don’t change values!

New problem: How do get data back from threads?

Callable interface
Callable interface has one abstract method call() that takes no arguments
Generic type: Object of <T> where T can be any Class

Below is an example with T as String:

import java.util.concurrent.Callable;

public class MyTask implements Callable<String> {

@Override

public String call() throws Exception {

// Your method that returns a String here

return "hello";

}

}

MyTask t = () -> "Hello!";

Future interface

Threads are asynchronous, so we generally do not know when we

will get the result back. So, how do we extract the value from a

Callable?

Future<String> future = executor.submit(

new Callable<String>(){

@Override

public String call(){

//do stuff

}

}

);

Future<T> comes to the rescue

Working with futures

A Future represents work that will be done at some point in the

“future”, hence the name. A bit like javascript promises!

There are several ways to get the result from a Future:

//Get the result when it's ready. Blocks the thread until then.

future.get();

//If you want to escape from the blocking method

//no later than a given time, you can set that.

future.get(10, TimeUnit.MINUTES);

//Or you can ask if the task is done (returns a boolean).

future.isDone();

ExecutorService
ExecutorService’s are usually created via one of the factory
methods in the Executors class as outlined below:

ExecutorService es = Executors.newXXXThreadPool();
//call1 must be a Callable object of type String. Observe how

//submit(..) returns a Future

Future<String> f1 = es.submit(call1)
...

//Get the result (when ready) from the future

System.out.println(f1.get());
...

Executors with Callables (and Futures)

Let’s create an example

Jokes

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

